Tracie Hayes receives the Russell J. and Dorothy S. Bilinski Bodega Marine Laboratory Fellowship

The Bilinski Fellowship supports “interdisciplinary, innovative, and highly collaborative” projects at the Bodega Marine Laboratory. Projects must “bridge the natural sciences, social sciences, and/or humanities”. Tracie’s project will support her continued research into the ecology of carrion beetles on ephemeral resource patches, and a collaborative in situ art exhibition along Mussel Point trail at the Bodega Marine Reserve.

Nitrogen increases early-stage and slows late-stage decomposition across diverse grasslands

Allison L. Gill, Peter B. Adler, Elizabeth T. Borer, Christopher R. Buyarski, Elsa E. Cleland, Carla M. D’Antonio, Kendi F. Davies, Daniel S. Gruner, W. Stanley Harpole, Kirsten S. Hofmockel, Andrew S. MacDougall, Rebecca L. McCulley, Brett A. Melbourne, Joslin L. Moore, John W. Morgan, Anita C. Risch, Martin Schütz, Eric W. Seabloom, Justin P. Wright, Louie H. Yang, Sarah E. Hobbie

Abstract

1. To evaluate how increased anthropogenic nutrient inputs alter carbon cycling in grasslands, we conducted a litter decomposition study across 20 temperate grasslands on three continents within the Nutrient Network, a globally distributed nutrient enrichment experiment

2. We determined the effects of experimental nitrogen (N), phosphorus (P), and potassium plus micronutrient (Kμ) additions on decomposition of a common tree leaf litter in a long-term study (maximum of 7 years; exact deployment period varied across sites). The use of higher-order decomposition models allowed us to distinguish between effects of nutrients on early- versus late-stage decomposition.

3. Across continents, addition of nitrogen (but not other nutrients) accelerated early-stage decomposition and slowed late-stage decomposition, increasing the slowly decomposing fraction by 28% and the overall litter mean residence time by 58%.

4. Synthesis. Using a novel, long-term cross-site experiment, we found widespread evidence that nitrogen enhances the early stages of aboveground plant litter decomposition across diverse and widespread temperate grassland sites, but slows late-stage decomposition. These findings were corroborated by fitting the data to multiple decomposition models and have implications for nitrogen effects on soil organic matter formation. For example, following nitrogen enrichment, increased microbial processing of litter substrates early in decomposition could promote production and transfer of low molecular weight compounds to soils, and potentially enhance stabilization of mineral-associated organic matter. By contrast, by slowing late-stage decomposition, nitrogen enrichment could promote particulate organic matter (POM) accumulation. Such hypotheses deserve further testing.

Journal of Ecology

https://doi.org/10.1111/1365-2745.13878

Biodiversity and infrastructure interact to drive tourism to and within Costa Rica

Alejandra Echeverri, Jeffrey R. Smith, Dylan MacArthur-Waltz, Katherine S. Lauck, Christopher B. Anderson, Rafael Monge Vargas, Irene Alvarado Quesada, Spencer A. Wood, Rebecca Chaplin-Kramer, Gretchen C. Daily

Abstract

Nature-based tourism has potential to sustain biodiversity and economic development, yet the degree to which biodiversity drives tourism patterns, especially relative to infrastructure, is poorly understood. Here, we examine relationships between different types of biodiversity and different types of tourism in Costa Rica to address three questions. First, what is the contribution of species richness in explaining patterns of tourism in protected areas and country-wide in Costa Rica? Second, how similar are the patterns for birdwatching tourism compared to those of overall tourism? Third, where in the country is biodiversity contributing more than other factors to birdwatching tourism and to overall tourism? We integrated environmental data and species occurrence records to build species distribution models for 66 species of amphibians, reptiles, and mammals, and for 699 bird species. We used built infrastructure variables (hotel density and distance to roads), protected area size, distance to protected areas, and distance to water as covariates to evaluate the relative importance of biodiversity in predicting birdwatching tourism (via eBird checklists) and overall tourism (via Flickr photographs) within Costa Rica. We found that while the role of infrastructure is larger than any other variable, it alone is not sufficient to explain birdwatching and tourism patterns. Including biodiversity adds predictive power and alters spatial patterns of predicted tourism. Our results suggest that investments in infrastructure must be paired with successful biodiversity conservation for tourism to generate the economic revenue that countries like Costa Rica derive from it, now and into the future.

PNAS

https://doi.org/10.1073/pnas.2107662119

 

An integrative approach for projecting insect responses to a rapidly changing climate

 

Leslie Ries, Greg Breed, Joel Kingsolver, Angela Smilanich and Louie H. Yang

Abstract

Projecting species’ responses to climate change at continental scales is a current “grand challenge” of ecological research. Insects are sensitive indicators of both climate and land-use change and recent studies indicate widespread declines in many geographic regions. To predict changes across entire ranges, a variety of species distribution models have been developed, but rarely account for regional variability, ecological interactions or a species’ potential to adapt to changing conditions. This project spans multiple institutions situated in the United States’ southwest, polar north, and temperate eastern regions. A series of physiological experiments will be implemented for five widespread butterfly species with populations sourced from different biomes within each of their ranges. Caterpillars will be subjected to a range of conditions mimicking past, current and future climates. Their development rate, survivorship, immune response, and genetic structure and gene expression (which genes are actively coding for proteins) will be measured and used to build models that predict distributional shifts. Data collected by community (“citizen”) scientists will be used to validate the models. This project requires substantial cross-disciplinary collaboration, and a central goal is to recruit diverse trainees at the graduate and undergraduate levels and train them in the “science of team science”. Project trainees will develop independent research ideas that align with and expand the project’s scope and travel between and work at collaborating institutions as an inter-lab exchange to learn new techniques and be exposed to different research philosophies. Finally, the project has significant management implications for insect biodiversity conservation.

NSF Integrative Biology, 2022-2025

 

 

Disentangling the direct, indirect, and combined effects of experimental warming on a plant–insect herbivore interaction

Heather M. Kharouba and Louie H. Yang

Abstract

There is increasing evidence that climate warming will have both direct and indirect effects on species. Whereas the direct effects of climate warming represent the proximate physiological consequences of changing abiotic conditions, the indirect effects of climate change reflect changes mediated by at least one other interacting species. The relative importance of these two kinds of effects has been unclear, limiting our ability to generalize the response of different species to climate change. Here, we used a series of experiments to disentangle some of the key direct and indirect effects of warming on the growth of monarch butterfly caterpillars (Danaus plexippus) and showy milkweed plants (Asclepias speciosa) during a window of rapid growth for both species. The effects of warming differed between direct, indirect, and combined effect experiments. Warming from 26°C to 30°C directly increased the growth of both monarch larvae and milkweeds, with monarch and milkweed growth rates showing similar sensitivity to warming. However, in a subsequent experiment, we did not observe significantly increased growth when comparing caterpillars and plants reared at 27°C and 31°C, suggesting that small differences can change the direct effects of warming. When caterpillars that were maintained at laboratory temperatures were fed leaves from host plants that were exposed to warmer temperatures, warming had a negative indirect effect on larval growth rates likely mediated by decreases in milkweed leaf quality. In experiments combining direct and indirect effects, we observed a net positive effect of warming on larval growth rates. Warming had no combined effects on milkweed growth, potentially due to opposing positive direct and negative indirect effects on growth mediated via increased monarch herbivory. These results show how variability among the direct, indirect, and combined effects of even relatively simple, short-term climatic perturbations can present challenges for predicting the broader effects of climatic warming in multispecies communities.

Ecosphere

https://doi.org/10.1002/ecs2.3778

A meta-analysis of single visit pollination effectiveness comparing honeybees and other floral visitors

M.L. Page, C.C. Nicholson, R.M. Brennan, A.T. Britzman, J. Greer, J. Hemberger, H. Kahl, U. Müller, Y. Peng, N.M. Rosenberger, C. Stuligross, L. Wang, L.H. Yang, N.M. Williams

Abstract

Premise
Many animals provide ecosystem services in the form of pollination, including honeybees which have become globally dominant floral visitors. A rich literature documents considerable variation in single visit pollination effectiveness, but this literature has yet to be extensively synthesized to address whether honeybees are effective pollinators.

Methods
We conducted a hierarchical meta-analysis of 168 studies and extracted 1564 single visit effectiveness (SVE) measures for 240 plant species. We paired SVE data with visitation frequency data for 69 of these studies. We used these data to ask: 1) Do honeybees (Apis mellifera) and other floral visitors differ in their SVE?; 2) To what extent do plant and pollinator attributes predict differences in SVE between honeybees and other visitors?; and 3) Is there a correlation between visitation frequency and SVE?

Key results
Honeybees were significantly less effective than the most effective non-honeybee pollinators but as effective as the average pollinator. The type of pollinator moderated these effects. Honeybees were less effective compared to the most effective and average bird and bee pollinators but were as effective as other taxa. Visitation frequency and SVE were positively correlated, but this trend was largely driven by data from communities where honeybees were absent.

Conclusions
Although high visitation frequencies make honeybees important pollinators, they were less effective than the average bee and rarely the most effective pollinator of the plants they visit. As such, honeybees may be imperfect substitutes for the loss of wild pollinators and safeguarding pollination will benefit from conservation of non-honeybee taxa.

American Journal of Botany

https://doi.org/10.1002/ajb2.1764